LASS2 regulates invasion and chemoresistance via ERK/Drp1 modulated mitochondrial dynamics in bladder cancer cells

نویسندگان

  • Lijuan Huang
  • Ting Luan
  • Yujin Chen
  • Xin Bao
  • Yinglong Huang
  • Shi Fu
  • Haifeng Wang
  • Jiansong Wang
چکیده

Mitochondria coordinated a lot of vital cellular processes of energy production and distribution. Change of mitochondrial functions has been implicated in cancer progression. The present study aims to investigate the involvement of mitochondria dynamics in LASS2 induced invasion and chemoresistance of bladder cancer cells. J82 and BIU87 cell lines were used for LASS2 plasmid transfection while siRNA knockdown was carried out in 5637 cell line. Matrigel invasion assay and Annexin V/PI staining demonstrated that LASS2 negatively regulated cancer cell invasion and chemoresistance. JC-1 staining suggested that LASS2 overexpression downregulated mitochondrial membrane potential. Mitotracker staining showed that LASS2 induced mitochondrial fusion and inhibited mitochondrial fission. In addition, LASS2 overexpression downregulated expression of mitochondrial fission protein p-Drp1 Drp1 and Fis1. While depletion of LASS2 exhibited the opposite effects. Drp1 inhibitor Mdivi abolished invasion and chemoresistance induced by LASS2 siRNA. Furthermore, we found that LASS2 overexpression could inhibit phosphorylation of ERK, which act upstream of Drp1. ERK inhibitor PD98059 suppressed Drp1 phosphorylation and abrogated the effects of LASS2 depletion. In conclusion, the present study demonstrated that LASS2 inhibits bladder cancer invasion and chemoresistance through regulation of ERK-Drp1 induced mitochondrial dynamics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NIK/MAP3K14 Regulates Mitochondrial Dynamics and Trafficking to Promote Cell Invasion

Although the role of NF-κB-inducing kinase (NIK) in immunity is well established, its relevance in cancer is just emerging. Here we describe novel functions for NIK in regulating mitochondrial dynamics and motility to promote cell invasion. We show that NIK is localized to mitochondria in cancer cell lines, ex vivo tumor tissue, and mouse embryonic fibroblasts (MEFs). NIK promotes mitochondrial...

متن کامل

ERK/Drp1-dependent mitochondrial fission is involved in the MSC-induced drug resistance of T-cell acute lymphoblastic leukemia cells

The bone marrow microenvironment facilitates the proliferation and survival of leukemia cells, contributing to disease relapse. Bone marrow-derived mesenchymal stem cells (MSCs) are well known to promote cancer chemoresistance via soluble factors and cell adhesion. However, little is known about the effects of MSCs on the mitochondrial dynamics of T-cell acute lymphoblastic leukemia (T-ALL) cel...

متن کامل

LASS2 inhibits growth and invasion of bladder cancer by regulating ATPase activity

Homo sapiens longevity assurance homolog 2 of yeast LAG1 (LASS2) is a novel suppressor of human cancer metastasis, and downregulation of LASS2 has been associated with a poor prognosis in patients with bladder cancer (BC). However, the molecular mechanism underlying LASS2-mediated inhibition of tumor invasion and metastasis in BC remains unclear. LASS2 has been reported to directly bind to subu...

متن کامل

The role of LASS2 in regulating bladder cancer cell tumorigenicity in a nude mouse model

Previous in vitro studies have demonstrated that LAG1 longevity assurance homolog 2 (LASS2) is a novel tumor suppressor gene that is significantly associated with the proliferation and invasion ability of tumor cells. However, the role LASS2 serves in regulating bladder cancer cell tumorigenicity and tumor growth in vivo has not yet been elucidated in animal or clinical studies. In the present ...

متن کامل

Hypoxia-dependent mitochondrial fission regulates endothelial progenitor cell migration, invasion, and tube formation

Tumor undergo uncontrolled, excessive proliferation leads to hypoxic microenvironment. To fulfill their demand for nutrient, and oxygen, tumor angiogenesis is required. Endothelial progenitor cells (EPCs) have been known to the main source of angiogenesis because of their potential to differentiation into endothelial cells. Therefore, understanding the mechanism of EPC-mediated angiogenesis in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2018